Metal artifact reduction (MAR) based on two-compartment physical modeling: evaluation in patients with hip implants

Author:

Boos Johannes1,Sawicki Lino Morris1,Lanzman Rotem Shlomo1,Thomas Christoph1,Aissa Joel1,Schleich Christoph1,Heusch Philipp1,Antoch Gerald1,Kröpil Patric1

Affiliation:

1. University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany

Abstract

Background Artifacts from metallic implants can hinder image interpretation in computed tomography (CT). Image quality can be improved using metal artifact reduction (MAR) techniques. Purpose To evaluate the impact of a MAR algorithm on image quality of CT examinations in comparison to filtered back projection (FBP) in patients with hip prostheses. Material and Methods Twenty-two patients with 25 hip prostheses who underwent clinical abdominopelvic CT on a 64-row CT were included in this retrospective study. Axial images were reconstructed with FBP and five increasing MAR levels (M30–34). Objective artifact strength (OAS) (SIart-SInorm) was assessed by region of interest (ROI) measurements in position of the strongest artifact (SIart) and in an osseous structure without artifact (SInorm) (in Hounsfield units [HU]). Two independent readers evaluated subjective image quality regarding metallic hardware, delineation of bone, adjacent muscle, and pelvic organs on a 5-point scale (1, non-diagnostic; 5, excellent image quality). Artifacts in the near field, far field, and newly induced artifacts due to the MAR technique were analyzed. Results OAS values were: M34: 243.8 ± 155.4 HU; M33: 294.3 ± 197.8 HU; M32: 340.5 ± 210.1 HU; M31: 393.6 ± 225.2 HU; M30: 446.8 ± 224.2 HU and FBP: 528.9 ± 227.7 HU. OAS values were significantly lower for M32–34 compared to FBP ( P < 0.01). For overall subjective image quality, results were: FBP, 2.0 ± 0.2; M30, 2.3 ± 0.8; M31, 2.6 ± 0.5; M32, 3.0 ± 0.6; M33, 3.5 ± 0.6; and M34, 3.8 ± 0.4 ( P < 0.001 for M30–M34 vs. FBP, respectively). Increasing MAR levels resulted in new artifacts in 17% of reconstructions. Conclusion The investigated MAR algorithm led to a significant reduction of artifacts from metallic hip implants. The highest MAR level provided the least severe artifacts and the best overall image quality.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3