Image Quality in Mammography with Special Reference to Anti-Scatter Grids and the Magnification Technique

Author:

Nielsen B.,Fagerberg G.

Abstract

Some of the parameters determining image quality in mammography are analyzed: the effects of primary photon spectra, focal spot size and screen-film systems on spatial resolution are discussed as are scattered radiation, development temperature and absorbed dose. The parameters limiting spatial resolution and contrast are evaluated for the standard and magnification techniques. Methods of reducing scattered radiation to improve contrast are evaluated. Scatter to primary ratios for different scatter reducing methods are compared, using the physical quantity energy imparted. For the standard technique the spatial resolution has been found to be limited by the fluorescent screen. With magnification technique the focal spot is the weakest link for the spatial resolution. The contrast is mainly set by the amount of scatter using the standard technique considering the use of a low tube potential (∼25 kVp). Using the magnification technique the amount of scatter is so small, that the tube potential is the limiting factor. We have found the optimized standard mammographic technique to be achieved under the following conditions: 25 kVp, 0.3 to 0.6 mm focal spot, film-focus distance 500 mm, anti-scatter grid, developing temperature 36 to 38°C and 4 minutes total processing time with the screen-film system we have used. In magnification technique an air gap of at least 20 mm is desired. With an FFD of about 500 mm this will give a magnification ratio of 1.8 to 2.0 and a 0.1 mm × 0.1 mm focus spot is mandatory. With this technique, it is necessary to use a faster screen-film system than that used in standard mammography.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3