Comparison of metal artifact reduction techniques in magnetic resonance imaging of carbon-reinforced PEEK and titanium spinal implants

Author:

Osterhoff Georg12ORCID,Huber Florian A3ORCID,Graf Laura C3,Erdlen Ferdinand1,Pape Hans-Christoph1,Sprengel Kai1,Guggenberger Roman3

Affiliation:

1. Department of Trauma, University Hospital Zurich, University Hospital Zurich, Zurich, Switzerland

2. Department of Orthopaedics, Trauma and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany

3. Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland

Abstract

Background Carbon-reinforced PEEK (C-FRP) implants are non-magnetic and have increasingly been used for the fixation of spinal instabilities. Purpose To compare the effect of different metal artifact reduction (MAR) techniques in magnetic resonance imaging (MRI) on titanium and C-FRP spinal implants. Material and Methods Rod-pedicle screw constructs were mounted on ovine cadaver spine specimens and instrumented with either eight titanium pedicle screws or pedicle screws made of C-FRP and marked with an ultrathin titanium shell. MR scans were performed of each configuration on a 3-T scanner. MR sequences included transaxial conventional T1-weighted turbo spin echo (TSE) sequences, T2-weighted TSE, and short-tau inversion recovery (STIR) sequences and two different MAR-techniques: high-bandwidth (HB) and view-angle-tilting (VAT) with slice encoding for metal artifact correction (SEMAC). Metal artifact degree was assessed by qualitative and quantitative measures. Results There was a much stronger effect on artifact reduction with using C-FRP implants compared to using specific MRI MAR-techniques (screw shank: P < 0.001; screw tulip: P < 0.001; rod: P < 0.001). VAT-SEMAC sequences were able to reduce screw-related signal loss artifacts in constructs with titanium screws to a certain degree. Constructs with C-FRP screws showed less artifact-related implant diameter amplification when compared to constructs with titanium screws ( P < 0.001). Conclusion Constructs with C-FRP screws are associated with significantly less artifacts compared to constructs with titanium screws including dedicated MAR techniques. Artifact-reducing sequences are able to reduce implant-related artifacts. This effect is stronger in constructs with titanium screws than in constructs with C-FRP screws.

Funder

Medtronic

OrthoContor

Carbofix

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3