Knowledge-based iterative model reconstruction in coronary computed tomography angiography: comparison with hybrid iterative reconstruction and filtered back projection

Author:

Cha Min Jae1,Seo Jae Seung2,Yoo Dong Soo3,Chong Semin1

Affiliation:

1. Chung-Ang University College of Medicine and Graduate School of Medicine, Seoul, Republic of Korea

2. G SAM Hopsital, Gyeonggi-do, Republic of Korea

3. Dankook University Hospital, Cheonan, Republic of Korea

Abstract

Background Knowledge-based iterative model reconstruction (IMR) is known to allow radiation dose reduction while preserving image quality. Purpose To investigate the effect of IMR on coronary computed tomography angiography (CCTA) by comparing it with filtered back projection (FBP) and hybrid iterative reconstruction (HIR). Material and Methods Forty-five patients (group A) who underwent CCTA with prospective electrocardiogram (ECG) triggering at 80 kVp were included. All images were reconstructed using three algorithms: FBP, HIR, and IMR. The control group comprised 45 patients (group B) who underwent CCTA at 100 kVp; their images were reconstructed with HIR alone. Objective and subjective image quality was assessed by two radiologists. Results In group A, the signal-to-noise and contrast-to-noise ratios were significantly higher for images reconstructed with IMR than with HIR or FBP ( P < 0.001). IMR was also superior to HIR and FBP in subjective image quality analyses, including image noise, vessel sharpness, beam-hardening artifact, and overall quality ( P < 0.001). Moreover, the images reconstructed using IMR in group A had superior image quality with less radiation exposure than those reconstructed using HIR in group B on both objective and subjective analyses ( P < 0.001). The mean attenuation values were also significantly higher in group A than in group B ( P < 0.001). Conclusion Compared with HIR and FBP, IMR provided higher quality images with less radiation exposure in CCTA, using low kilovoltage and prospective ECG triggering.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3