3D multi-scale feature extraction and recalibration network for spinal structure and lesion segmentation

Author:

Wang Hongjie1,Chen Yingjin1,Jiang Tao2ORCID,Bian Huwei2,Shen Xing1

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

2. Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Changzhou, PR China

Abstract

Background Automatic segmentation has emerged as a promising technique for the diagnosis of spinal conditions. Purpose To design and evaluate a deep convolution network for segmenting the intervertebral disc, spinal canal, facet joint, and herniated disk on magnetic resonance imaging (MRI) scans. Material and Methods MRI scans of 70 patients with disc herniation were gathered and manually annotated by radiologists. A novel deep neural network was developed, comprising 3D squeeze-and-excitation blocks and multi-scale feature extraction blocks for automated segmentation of spinal structure and lesion. To address the issue of class imbalance, a weighted cross-entropy loss was introduced for training. In addition, semi-supervision segmentation was accomplished to reduce annotation labor cost. Results The proposed model achieved 77.67% mean intersection over union, with 9.56% and 11.11% gains over typical V-Net and U-Net respectively, outperforming the other models in ablation experiments. In addition, the semi-supervision segmentation method was proven to work. Conclusion The 3D multi-scale feature extraction and recalibration network achieved an excellent segmentation performance of intervertebral disc, spinal canal, facet joint, and herniated disk, outperforming typical encoder-decoder networks.

Funder

National Natural Science Foundation of China

“333 Project” of Jiangsu Province

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3