Improvement of SNR and acquisition acceleration using a 32-channel head coil compared to a 12-channel head coil at 3T

Author:

Reiss-Zimmermann Martin1,Gutberlet Marcel2,Köstler Herbert3,Fritzsch Dominik1,Hoffmann Karl-Titus1

Affiliation:

1. Department of Neuroradiology, University Hospital Leipzig, Leipzig

2. Institute of Radiology, Hannover Medical School, Hannover

3. Institute of Radiology, University of Würzburg, Würzburg, Germany

Abstract

Background Magnetic resonance imaging (MRI) techniques continue to improve in manifold ways. Besides field strength and sequence optimization, technical advances in coil design and sensitivity yield to increase the signal detection and therefore improve image quality. Purpose To evaluate the performance of signal-to-noise ratio (SNR) and parallel acquisition technique (PAT) acceleration of a dedicated 32-channel head coil compared with a standard 12-channel head coil. Material and Methods In a clinical 3T setting, spatial resolved SNR values for unaccelerated imaging and PAT with acceleration factors of 2–6 of a 32-channel head coil were evaluated in relation to a 12-channel head coil. SNR was determined quantitatively using proton-density-weighted in-vivo examinations in five healthy volunteers. Quantitative SNR maps for unaccelerated and PAT imaging were calculated using unfiltered MR raw data. Results Up to three-fold higher SNR values were achieved with the 32-channel head coil, which diminished towards the center to an increase of 40% compared with the 12-channel head coil. When using PAT, the 32-channel head coil resulted in a lower spatial-dependent quantitative noise enhancement, varying between 0% at R = 2 and 33% at R = 5. Conclusion The 32-channel head coil provided superior SNR both with and without PAT compared with a 12-channel head coil, especially close to the brain surface. Using PAT, the unavoidable noise enhancement is diminished up to acceleration factors of 6 for the 32-channel head coil. Therefore, the 32-channel head coil is considered as a preferable tool for high-resolution neuroradiological imaging.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3