Improvement of image quality applying iterative scatter correction for grid-less skeletal radiography in trauma room setting

Author:

Lisson Christoph G1,Lisson Catharina S1,Vogele Daniel1,Strauss Beatrice2,Schuetze Konrad2,Cintean Raffael2,Beer Meinrad1ORCID,Schmidt Stefan A1ORCID

Affiliation:

1. Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Ulm, Germany

2. Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany

Abstract

Background Iterative reconstruction is well established for CT. Plain radiography also takes advantage of iterative algorithms to reduce scatter radiation and improve image quality. First applications have been described for bedside chest X-ray. A recent experimental approach also provided proof of principle for skeletal imaging. Purpose To examine clinical applicability of iterative scatter correction for skeletal imaging in the trauma setting. Material and Methods In this retrospective single-center study, 209 grid-less radiographs were routinely acquired in the trauma room for 12 months, with imaging of the chest (n = 31), knee (n = 111), pelvis (n = 14), shoulder (n = 24), and other regions close to the trunk (n = 29). Radiographs were postprocessed with iterative scatter correction, doubling the number of images. The radiographs were then independently evaluated by three radiologists and three surgeons. A five-step rating scale and visual grading characteristics analysis were used. The area under the VGC curve (AUCVGC) quantified differences in image quality. Results Images with iterative scatter correction were generally rated significantly better (AUCVGC = 0.59, P < 0.01). This included both radiologists (AUCVGC = 0.61, P < 0.01) and surgeons (AUCVGC = 0.56, P < 0.01). The image-improving effect was significant for all body regions; in detail: chest (AUCVGC = 0.64, P < 0.01), knee (AUCVGC = 0.61, P < 0.01), pelvis (AUCVGC = 0.60, P = 0.01), shoulder (AUCVGC = 0.59, P = 0.02), and others close to the trunk (AUCVGC = 0.59, P < 0.01). Conclusion Iterative scatter correction improves the image quality of grid-less skeletal radiography in the clinical setting for a wide range of body regions. Therefore, iterative scatter correction may be the future method of choice for free exposure imaging when an anti-scatter grid is omitted due to high risk of tube-detector misalignment.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3