The Layering Phenomenon and Boundary Formation in Radiographs

Author:

Nilson A. E.

Abstract

In a radiographic examination using a water-soluble contrast medium this may form a layer beneath a body fluid. Between the two liquids a zone consisting of a mixture of the two liquids then forms through diffusion. This diffusion layer produces some characteristic features in the radiographic image, an analysis of which was the purpose of the model experiments performed in this investigation. In this analysis of the layering phenomenon the radiographed objects were cylindrical tubes of methyl methacrylate partly filled with water. In some cases a rod was placed concentrically in the tube. Contrast medium was layered below the water. Radiographs were produced with the tube either vertical or inclined, and with either a horizontal or a vertical projection. In the image the layer of contrast medium was visualized as a light field, and the water layer as an overlying relatively dark field. The diffusion layer was visualized as a transitional zone—the diffusion field. Distinct boundaries and Mach lines observed in the bottom field were produced by the interface between the contrast medium and the solid wall where it was touched by the roentgen rays. These boundaries continued into the diffusion field where they gradually became less visible and eventually disappeared. The upper and lower boundaries of the diffusion field were diffuse and associated with dark and light Mach bands, respectively. The upper boundary appeared to be convex upwards. In the case of the inclined model and a vertical beam the diffusion field was elliptical, with a still more diffuse transition to the fields above and below than in the case of the vertical model and a horizontal beam. When layering of the contrast medium and a body fluid occurs the imaged distinct boundary of the layer of medium always represents the surface of a solid anatomic structure. A diffuse boundary, on the other hand, can be produced by the diffusion layer, itself.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3