A new medical imaging postprocessing and interpretation concept to investigate the clinical relevance of incidentalomas: can we keep Pandora's box closed?

Author:

Kwee Thomas C1ORCID,Roest Christian1,Kasalak Ömer1,Pennings Jan P1,de Jong Igle Jan2,Yakar Derya1ORCID

Affiliation:

1. Medical Imaging Center, Departments of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

2. Department of Urology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Abstract

Background Incidental imaging findings (incidentalomas) are common, but there is currently no effective means to investigate their clinical relevance. Purpose To introduce a new concept to postprocess a medical imaging examination in a way that incidentalomas are concealed while its diagnostic potential is maintained to answer the referring physician's clinical questions. Material and Methods A deep learning algorithm was developed to automatically eliminate liver, gallbladder, pancreas, spleen, adrenal glands, lungs, and bone from unenhanced computed tomography (CT). This deep learning algorithm was applied to a separately held set of unenhanced CT scans of 27 patients who underwent CT to evaluate for urolithiasis, and who had a total of 32 incidentalomas in one of the aforementioned organs. Results Median visual scores for organ elimination on modified CT were 100% for the liver, gallbladder, spleen, and right adrenal gland, 90%–99% for the pancreas, lungs, and bones, and 80%–89% for the left adrenal gland. In 26 out of 27 cases (96.3%), the renal calyces and pelves, ureters, and urinary bladder were completely visible on modified CT. In one case, a short (<1 cm) trajectory of the left ureter was not clearly visible due to adjacent atherosclerosis that was mistaken for bone by the algorithm. Of 32 incidentalomas, 28 (87.5%) were completely concealed on modified CT. Conclusion This preliminary technical report demonstrated the feasibility of a new approach to postprocess and evaluate medical imaging examinations that can be used by future prospective research studies with long-term follow-up to investigate the clinical relevance of incidentalomas.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3