Trade-off between the radiation parameters and image quality using iterative reconstruction techniques in head computed tomography: a phantom study

Author:

Lāce Elīza1,Mohammadian Reza1ORCID,Āboltiņš Ainārs2,Sosārs Dāvis2,Apine Ilze12

Affiliation:

1. Department of Radiology, Riga Stradin's University, Riga, Latvia

2. Department of Radiology, Children's Clinical University Hospital, Riga, Latvia

Abstract

Background Iterative reconstruction techniques (IRTs) are commonly used in computed tomography (CT) and help to reduce image noise. Purpose To determine the minimum radiation dose while preserving image quality in head CT using IRTs. Material and Methods The anthropomorphic phantom was used to scan nine head CT image series with varied radiation parameters. CT dose parameters, including volume CT dose index (CTDIvol [in mGy]) and dose length product (DLP [in mGy/cm]), were recorded for each scan series. Different noise levels (iDoseL1-6) were used in IRT reconstructions for soft and bone tissues. In total, 15 measurements were taken from five regions of interest (ROI) with an area of 10 mm2. The signal-to-noise ratio (SNR) and noise values obtained at different ROIs were compared among various reconstruction methods with repeated measures of statistical analysis . Results In the head CT scan, applying IRT iDoseL5 had the lowest noise and highest SNR for soft tissue ( P < 0.05), and increased iDose can decrease CT dose by 54.6% without compromising image quality. While for bone tissue reconstruction, no clear association was found between the level of iDose and noise. However, when CTDIvol is >20 mGy, iDoseL4 is slightly superior to other reconstruction methods ( P < 0.065). Conclusion Using IRTs in head CTs reduces radiation dose while maintaining image quality. IDoseL5 provided optimal balance for soft tissue.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3