Ultrasound-stimulated microbubbles enhances radiosensitivity of ovarian cancer

Author:

Ba Shuang1,Yu Ming1ORCID

Affiliation:

1. Department of Ultrasound, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, PR China

Abstract

Background Radiation therapy is regarded as an effective treatment for early ovarian cancer (OC). However, due to radiation resistance caused by DNA double-strand breaks (DSBs) and angiogenesis, the efficacy of radiotherapy for advanced OC is limited and controversial. Purpose To explore whether ultrasound-stimulated microbubbles (USMBs) can enhance the radiosensitivity of OC. Material and Methods OC cells (ES-2) were respectively irradiated with 5-Gy and 10-Gy radiation doses with or without exposure to USMB. Methyl thiazolyltetrazolium (MTT) and colony-formation assays were conducted to detect the viability and proliferation of ES-2 cells after USMBs and ionizing radiation (IR) treatment. Immunofluorescence assays were conducted to examine levels of gamma-H2A histone family member X (γ-H2AX), an indicator for DSBs. Flow cytometry analyses were carried out to assess the apoptosis of ES-2 cells. The angiogenic activity of human umbilical vein endothelial cells (HUVECs) was measured by tube formation assays. Results USMBs enhanced IR-induced suppressive effect on the viability and proliferation of OC cells. The protein levels of phosphorylated γ-H2AX and CHK1 were significantly upregulated after IR treatment and further enhanced by USMBs. In addition, USMBs enhanced the promotion of IR-mediated OC cell apoptosis. The inhibitory effect of IR on angiogenesis was further enhanced by USMBs, and protein levels of AT1R, VEGFA, and EGFR were downregulated by IR in a dose-dependent way and then enhanced by USMB treatment in HUVECs. Conclusions USMB exposure significantly enhances the radiosensitivity of OC by suppressing cell proliferation, promoting OC cell apoptosis, and inhibiting angiogenesis.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3