Phenotype and function of smooth muscle cells derived from the human normal great saphenous vein in response to hypoxia

Author:

Chu Haibo1ORCID,Qin Yanyan12,Qiu Tianzhen1,Zhou Shunchang1,Na Zhang3,Sun Yanping3,Xu Yongbo3ORCID,Zhong Yuxu2

Affiliation:

1. Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China

2. State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China

3. Center of General Surgery, The 80th Group Army Hospital of People’s Liberation Army, Weifang, China

Abstract

Objective The contribution of hypoxia to the pathophysiology of vascular smooth muscle cells (VSMCs) has not yet been fully elucidated. This study evaluated the effect of hypoxia on the phenotype and function of SMCs derived from the human normal great saphenous veins (NGSVs). Methods Fifteen NGSV tissue samples were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, senescence, and the structure of cytoskeletal filaments in SMCs were observed. mRNA and protein expression of Bax, Bcl-2, caspase-3, matrix metalloproteinases (MMP)-2, MMP-9, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2 was detected by fluorescent quantitative polymerase chain reaction and immunoblotting in the cobalt chloride (CoCl2) and the control groups. Results A decrease in the number of cytoskeletal filaments was observed. mRNA and protein expression of Bas and caspase-3 was significantly decreased, while the quantity of proliferation, migration, adhesion, senescence, and mRNA and protein expression of Bcl-2, MMP-2, MMP-9, TIMP-1, and TIMP-2 in SMCs in the CoCl2 group were significantly increased compared with the control group. Conclusion Under hypoxic conditions, the phenotype and function of SMCs derived from the human NGSVs were dysregulated, suggesting that VSMCs switch from the contractile phenotype to the secretory or synthetic phenotype, and more dedifferentiate, resulting in extracellular matrix deposition and apoptotic decrease through the intrinsic pathway.

Funder

Military Logistic Project of China

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3