Characteristic analysis of high-speed steel powder prepared by gas atomisation

Author:

Zhang Deyin12,Lu Tianyu1,Hao Xu1,Tian Jiyang3,Yu Ying1,Jia Baorui1,Wu Haoyang1,Qin Mingli12,Qu Xuanhui1

Affiliation:

1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China

2. Shunde Innovation School, University of Science and Technology Beijing, Foshan, China

3. National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd, Beijing, China

Abstract

The performance of high-speed steel (HSS) powder is a prerequisite for the preparation of high-performance powder metallurgy HSS. The physical properties, microstructure, and solidification characteristics of HSS powder prepared by nitrogen gas atomisation were systematically studied and analysed in detail. For the atomised TPM558 HSS powder, the morphology is spherical and the particle size distribution is wide. The smooth small particles of satellite powder attach to the surface of large particles. Shrinkage pits caused by solidification shrinkage exist on the surface of large particles. The average cooling rate is between 104 and 106 K·s−1, with the increase of cooling rate, the powder surface tends to be smooth, and the grain structure is transformed in the order of cellular to dendritic to radial. The single powder particle surface shows fine-equiaxed grains, while the internal presents columnar grains. The crystalline phases of the powder are austenite, ferrite, martensite, and carbide, and the carbide includes MC carbide with face-centred structure and M2C carbide with hexagonal structure. The average nano-hardness of the powder is 9.93 GPa, resulting in poor formability, and it can be pressed and formed only after adding binder.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3