Design and analysis of a multi-configuration wheel-leg hybrid drive robot machine

Author:

Hou Feng1ORCID,Yuan Jiwei2,Li Kunpeng1,Wang Zhouyi2

Affiliation:

1. Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou, People’s Republic of China

2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People’s Republic of China

Abstract

The use of robots to perform tasks in extreme environments instead of humans has gradually become important. For wider applications, robots should be able to adapt to complex environments, such as typical height/width-restricted motion spaces, raised obstacles, and ravines. The structure is the foundation of robot to move and perform tasks. In this study, a variable-attitude robot mechanism is designed and analyzed. With the link leg drive and Mecanum wheel drive, the robot has various configurations and omnidirectional motion capabilities. First, the design and analysis of the wheel drive system are performed, and the mapping relationship between the velocity of the robot and the velocity of the Mecanum wheel is clarified. Second, kinematics of the linkage drive system is analyzed, including the motion space, trajectory characteristics, and the effect of variable axle spacing on the robot motion performance. Subsequently, a simulation is used to verify the rationality of the three motion modes of the robot: walking, wheel drive, and hybrid drive. Finally, a motion simulation of several typical configuration changes in the robot is observed, and the feasibility of the robot mechanism to adapt to a complex environment is verified. This study contributes to the development and application of special advanced robots.

Funder

National Key R&D program of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3