Online paths planning method for unmanned surface vehicles based on rapidly exploring random tree and a cooperative potential field

Author:

Wen Naifeng12ORCID,Zhao Lingling3,Zhang Ru-Bo12ORCID,Wang Shuai4,Liu Guanqun12,Wu Junwei12,Wang Liyuan1

Affiliation:

1. School of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian, China

2. Key Laboratory of Intelligent Perception and Advanced Control, Dalian Minzu University, Dalian, China

3. Faculty of Computing, Harbin Institute of Technology, Harbin, China

4. College of Mathematics and Informatics, Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fujian, China

Abstract

The unstructured, dynamic marine environmental information and the cooperative obstacle avoidance problem greatly challenge the online path planner for unmanned surface vehicles. Efficiency and optimization are crucial for online path planning schemes. Thus, we proposed an algorithmic combination of the optimal rapidly exploring random tree and artificial potential field methods. First, we built a repulsive potential field by considering the relative velocity and position of the unmanned surface vehicle to obstacles and the international regulations for preventing collisions at sea, wherein we designed a repulsive force calculation method using radar readings to avoid irregular obstacles. Then, we guided the sampling process of rapidly exploring random tree using the potential field to accelerate the convergence rate of rapidly exploring random tree to low-cost obstacle avoidance paths. Finally, we planned for multiple paths based on the leader–follower architecture with the guidance of a cooperative potential field. In the experiments, the proposed method consistently outperformed the benchmark methods. We also verified the effectiveness of the algorithmic modifications by conducting ablation experiments.

Funder

Project of Fujian Provincial Educational Research for Young and Middle-aged Teachers

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3