Ultra-wide-band-based adaptive Monte Carlo localization for kidnap recovery of mobile robot

Author:

Lin Rui1ORCID,Dong Shuai1,Zhao Wei-wei1ORCID,Cheng Yu-hui1

Affiliation:

1. Robotics and Microsystems Research Center, Soochow University, Suzhou, China

Abstract

In the article, a global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization is proposed for quick and robust kidnap recovery of mobile robot. First, two ultra-wide-band modules, the tag installed inside the mobile robot and the anchor installed inside charging station, are used to obtain the relative distance between the mobile robot and the charging station. Second, the global grid map is converted into a map with obstacle noise given the ranging accuracy of the ultra-wide-band modules with different obstacles. Third, while the robot is kidnapped, matching grids are screened based on the range information of ultra-wide-band modules and the obstacle noise of the grids. Finally, global localization algorithm is performed based on ultra-wide-band-based adaptive Monte Carlo localization to convert randomly generated particles from the whole map into randomly generated particles in the local map. Experimental results based on gazebo simulation and a real scenario showed that our global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization not only significantly helped to improve the chances of the robot global pose recovery from lost or kidnapped state but also enabled the robot kidnap recovery with a smaller number of randomly generated particles, thus reducing the time to recover its accurate global localization. The algorithm was also more effective especially for kidnap recovery in a similar and large scenario.

Funder

National key research and development program of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3