A hybrid thrusting system for increasing the endurance time of multirotor unmanned aerial vehicles

Author:

Bdour Jawad1,Sababha Belal H2ORCID

Affiliation:

1. Department of Electrical Engineering, School of Engineering, Princess Sumaya University for Technology, Amman, Jordan

2. Department of Computer Engineering, School of Engineering, Princess Sumaya University for Technology, Amman, Jordan

Abstract

One of the most significant disadvantages of electric multirotor unmanned aerial vehicles is their short flight time compared to fuel-powered unmanned aerial vehicles. This is mainly due to the low energy density of electric batteries. Fuel has much more energy density when compared to batteries. Electric-powered motors in multirotor unmanned aerial vehicles cannot be replaced with fuel-based engines because the stability and control of multirotor unmanned aerial vehicles rely on the high response rates of electric motors. One of the possible solutions to overcome this problem of short endurance times is by using hybrid thrusting systems that combine the advantages of both fuel and electrical propulsion systems, where high maneuverability and long endurance flight time could be achieved. In this work, hybrid thrusting and power systems for multirotor unmanned aerial vehicles are studied. Targeted hybrid thrusting systems consist of combustion engines, electric motors, and their power sources. Then a hybrid thrusting system-based quadrotor unmanned aerial vehicle model is developed. The article presents the altitude and attitude control systems of the developed hybrid thrusting system-based unmanned aerial vehicle. The presented hybrid quadcopter model comprises four electric motors and one fuel engine. The fuel engine used in this work is a 4.07 cc internal combustion engine targeting 2–3 kg unmanned aerial vehicles with up to 5 kg maximum takeoff weight. The developed hybrid quadrotor unmanned aerial vehicle achieved a 139% improvement in flight time when compared with traditional electric-based quadrotor unmanned aerial vehicles. The article also reports on other flight time-related issues such as the optimal fuel mass to battery size ratio to maximize the endurance time of the quadrotor unmanned aerial vehicles.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3