Configurable simulation strategies for testing pollutant plume source localization algorithms using autonomous multisensor mobile robots

Author:

Lewis Tyrell1,Bhaganagar Kiran1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Texas, San Antonio, TX, USA

Abstract

In hazardous situations involving the dispersion of chemical, biological, radiological, and nuclear pollutants, timely containment of the emission is critical. A contaminant disperses as a dynamically evolving plume into the atmosphere, introducing complex difficulties in predicting the dispersion trajectory and potential evacuation sites. Strategies for predictive modeling of rapid contaminant dispersion demand localization of the emission source, a task performed effectively via unmanned mobile-sensing platforms. With vast possibilities in sensor configurations and source-seeking algorithms, platform deployment in real-world applications involves much uncertainty alongside opportunity. This work aims to develop a plume source detection simulator to offer a reliable comparison of source-seeking approaches and performance testing of ground-based mobile-sensing platform configurations prior to experimental field testing. Utilizing ROS, Gazebo, MATLAB, and Simulink, a virtual environment is developed for an unmanned ground vehicle with a configurable array of sensors capable of measuring plume dispersion model data mapped into the domain. For selected configurations, gradient-based and adaptive exploration algorithms were tested for source localization using Gaussian dispersion models in addition to large eddy simulation models incorporating the effects of atmospheric turbulence. A unique global search algorithm was developed to locate the true source with overall success allowing for further evaluation in field experiments. From the observations obtained in simulation, it is evident that source-seeking performance can improve drastically by designing algorithms for global exploration while incorporating measurements of meteorological parameters beyond solely concentration (e.g. wind velocity and vorticity) made possible by the inclusion of high-resolution large eddy simulation plume data.

Funder

Aeronautics Research Mission Directorate

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3