Outlier detection in hyperspectral imagery using closest distance to center with ellipsoidal multivariate trimming

Author:

Caulk Ryan F1,Reyes Kevin B1,Bauer Kenneth W2

Affiliation:

1. Randolf AFB, 151 J St East, TX 78150, USA

2. Air Force Institute of Technology, Wright-Patterson AFB, 2950 Hobson Way, OH 45433, USA

Abstract

In this paper we examine the efficacy of using the closest distance to center algorithm in conjunction with ellipsoidal multivariate trimming (MVT) to find outliers in a hyperspectral image. MVT is applied here as a global anomaly detector on images that are pre-processed into clusters using a technique called X-means. Under the assumption that there are no more than 5% outliers in any given cluster set, we develop a method, based upon principal component analysis pre-processing, to create a flexible threshold for determining the percentage of data to retain with MVT. Using a retention percentage that more adequately reflects the actual number of outlier-free observations allows one to form estimates of the mean and covariance matrix that more effectively decrease the effects of swamping and masking as compared to using a set percentile for retention. These ideas are tested against real and synthetically generated hyperspectral imagery.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3