Multi-day evaluation of space domain awareness architectures via decision analysis and multi-objective optimization

Author:

Vasso Albert R1ORCID,Cobb Richard G1,Colombi John M1ORCID,Little Bryan D1ORCID,Meyer David W1

Affiliation:

1. Air Force Institute of Technology, USA

Abstract

The US Government is the world’s de facto provider of space object cataloging data, but it is challenged to maintain pace in an increasingly complex space environment. This work advances a multi-disciplinary approach to better understand and evaluate an underexplored solution recommended by national policy in which current collection capabilities are augmented with non-traditional sensors. System architecting techniques and extant literature identified likely needs, performance measures, and potential contributors to a conceptualized Augmented Network (AN). Multiple hypothetical architectures of ground- and space-based telescopes with representative capabilities were modeled and simulated on four separate days throughout the year, then evaluated against performance measures and constraints using Multi-Objective Optimization. Decision analysis and Pareto optimality identified a small, diverse set of high-performing architectures while preserving design flexibility. Should decision-makers adopt the AN approach, this research effort indicates (1) a threefold increase in average capacity, (2) a 55% improvement in coverage, and (3) a 2.5-h decrease in the average maximum time a space object goes unobserved.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Reference36 articles.

1. Lal B, Balakrishnan A, Caldwell BM, et al. Global trends in Space Situational Awareness (SSA) and Space Traffic Management (STM). Report, Institute for Defense Analyses, Alexandria, VA, April 2018.

2. Chaplain C. Space situational awareness efforts and planned budgets. Report, Government Accountability Office, Washington, DC, October 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3