Affiliation:
1. SIIS Laboratory, Department of CSE, The Pennsylvania State University
2. Vencore Labs, Basking Ridge, NJ, USA
Abstract
Experimentation is critical to understanding the malware operation and to evaluating potential defenses. However, constructing the controlled environments needed for this experimentation is both time-consuming and error-prone. In this study, we highlight several common mistakes made by researchers and conclude that existing evaluations of malware detection techniques often lack in both flexibility and transparency. For instance, we show that small variations in the malware’s behavioral parameters can have a significant impact on the evaluation results. These variations, if unexplored, may lead to overly optimistic conclusions and detection systems that are ineffective in practice. To overcome these issues, we propose a framework to model malware behavior and guide systematic parameter selection. We evaluate our framework using a synthetic botnet executed within the CyberVAN testbed. Our study is intended to foster critical evaluation of proposed detection techniques and stymie unintentionally erroneous experimentation.
Subject
Engineering (miscellaneous),Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. IoT device fingerprinting for relieving pressure in the access control;Proceedings of the ACM Turing Celebration Conference - China;2019-05-17