Applying reinforcement learning to an insurgency Agent-based Simulation

Author:

Collins Andrew1,Sokolowski John1,Banks Catherine1

Affiliation:

1. Virginia Modeling Analysis and Simulation Center, USA

Abstract

A requirement of an Agent-based Simulation (ABS) is that the agents must be able to adapt to their environment. Many ABSs achieve this adaption through simple threshold equations due to the complexity of incorporating more sophisticated approaches. Threshold equations are when an agent behavior changes because a numeric property of the agent goes above or below a certain threshold value. Threshold equations do not guarantee that the agents will learn what is best for them. Reinforcement learning is an artificial intelligence approach that has been extensively applied to multi-agent systems but there is very little in the literature on its application to ABS. Reinforcement learning has previously been applied to discrete-event simulations with promising results; thus, reinforcement learning is a good candidate for use within an Agent-based Modeling and Simulation (ABMS) environment. This paper uses an established insurgency case study to show some of the consequences of applying reinforcement learning to ABMS, for example, determining whether any actual learning has occurred. The case study was developed using the Repast Simphony software package.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modelling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ABMSCORE: a heuristic algorithm for forming strategic coalitions in agent-based simulation;Journal of Simulation;2024-02-05

2. Deep reinforcement learning in agent-based simulations for optimal media planning;Information Fusion;2023-03

3. Humans and the core partition: An agent-based modeling experiment;PLOS ONE;2022-09-01

4. Can we replicate real human behaviour using artificial neural networks?;Mathematical and Computer Modelling of Dynamical Systems;2022-02-27

5. Past challenges and the future of discrete event simulation;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2021-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3