Training data augmentation for deep learning radio frequency systems

Author:

Clark William H1ORCID,Hauser Steven2,Headley William C1,Michaels Alan J1

Affiliation:

1. Ted and Karyn Hume Center for National Security and Technology, Virginia Tech, Blacksburg, VA, USA

2. Adapdix Corporation, Pleasanton, CA, USA

Abstract

Applications of machine learning are subject to three major components that contribute to the final performance metrics. Within the category of neural networks, and deep learning specifically, the first two are the architecture for the model being trained and the training approach used. This work focuses on the third component, the data used during training. The primary questions that arise are “what is in the data” and “what within the data matters?” looking into the radio frequency machine learning (RFML) field of automatic modulation classification (AMC) as an example of a tool used for situational awareness, the use of synthetic, captured, and augmented data are examined and compared to provide insights about the quantity and quality of the available data necessary to achieve desired performance levels. Three questions are discussed within this work: (1) how useful a synthetically trained system is expected to be when deployed without considering the environment within the synthesis, (2) how can augmentation be leveraged within the RFML domain, and, lastly, (3) what impact knowledge of degradations to the signal caused by the transmission channel contributes to the performance of a system. In general, the examined data types each make useful contributions to a final application, but captured data germane to the intended use case will always provide more significant information and enable the greatest performance. Despite the benefit of captured data, the difficulties and costs that arise from live collection often make the quantity of data needed to achieve peak performance impractical. This paper helps quantify the balance between real and synthetic data, offering concrete examples where training data is parametrically varied in size and source.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modelling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3