Actor–critic-based decision-making method for the artificial intelligence commander in tactical wargames

Author:

Zhang Junfeng12ORCID,Xue Qing1

Affiliation:

1. Military Exercise and Training Center, Army Academy of Armored Forces, China

2. Information Technology Department, Troop No. 32370 of PLA, China

Abstract

In a tactical wargame, the decisions of the artificial intelligence (AI) commander are critical to the final combat result. Due to the existence of fog-of-war, AI commanders are faced with unknown and invisible information on the battlefield and lack of understanding of the situation, and it is difficult to make appropriate tactical strategies. The traditional knowledge rule-based decision-making method lacks flexibility and autonomy. How to make flexible and autonomous decision-making when facing complex battlefield situations is a difficult problem. This paper aims to solve the decision-making problem of the AI commander by using the deep reinforcement learning (DRL) method. We develop a tactical wargame as the research environment, which contains built-in script AI and supports the machine–machine combat mode. On this basis, an end-to-end actor–critic framework for commander decision making based on the convolutional neural network is designed to represent the battlefield situation and the reinforcement learning method is used to try different tactical strategies. Finally, we carry out a combat experiment between a DRL-based agent and a rule-based agent in a jungle terrain scenario. The result shows that the AI commander who adopts the actor–critic method successfully learns how to get a higher score in the tactical wargame, and the DRL-based agent has a higher winning ratio than the rule-based agent.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applying Deep Reinforcement Learning to Train AI Agents in a Wargaming Framework;SoutheastCon 2024;2024-03-15

2. Technological Management Innovation: A Combination of Technology Roadmap and Wargame;2023 IEEE International Conference on Networking, Sensing and Control (ICNSC);2023-10-25

3. Hierarchical Architecture for Multi-Agent Reinforcement Learning in Intelligent Game;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3