Supporting shipboard helicopter flight testing with simulation and metrics for predicting pilot workload

Author:

Comeau Perry1ORCID,Wall Alanna1,Thornhill Eric2,McTavish Sean1,Lee Richard1

Affiliation:

1. National Research Council, Canada

2. Defence Research and Development, Canada

Abstract

Shipboard helicopter operations are much more challenging and complex than land-based operations due to many factors associated with the presence of the ship. To determine those conditions in which safe operations may occur, a First of Class Flight Trial (FOCFT) is conducted for every new ship–helicopter pair. This trial results in a Ship–Helicopter Operating Limit (SHOL) envelope that is used to document operational limits for regular operations. Conducting a FOCFT is a, expensive, and time-consuming task that requires testing all aspects of operations. Modeling and simulation efforts to support shipboard helicopter operations have been ongoing internationally for many years with the intention of de-risking FOCFT and introducing efficiency into the testing process. Canada will be accepting several new ship classes into its fleet over the next two decades. In support of FOCFT for these new ships, modeling and simulation tools are being developed by the National Research Council (NRC) Canada and Defence Research and Development Canada (DRDC) and significant advancements have occurred in the past decade. As part of this work, NRC and DRDC now use a framework and analysis approach that is intended to standardize SHOL testing with the use of modeling and simulation. This paper introduces that framework and gives details on the modeling and simulation tools that can be used to reduce risk and increase efficiency for Canada’s upcoming FOCFTs.

Funder

Canadian Gov’t

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Reference39 articles.

1. Healey J. Simulating the helicopter-ship interface as an alternative to current methods of determining the safe operating envelopes. Research report, Naval Postgraduate School, Monterey, CA, 1986.

2. Establishing a database for flight in the wakes of structures

3. Ship-helo coupled airwake aerodynamics: A comprehensive review

4. North Atlantic Treaty Organization STO, 2022. https://sto.nato.int

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3