Affiliation:
1. Mechanical Engineering Department, Yasouj University, Iran
Abstract
This paper studies the ballistic limit velocity of empty rectangular columns under a blunt projectile penetration, theoretically and numerically. The deformation mechanism of the empty column is considered as plugging. The projectile is assumed to be a flat-ended cylinder without deformation. A new theoretical model of deformation is introduced, and based on the energy method, a theoretical formula is derived to estimate the ballistic limit velocity of the process. Numerical simulations of the penetration process of a blunt solid cylinder into the empty metal columns are performed using the LS-DYNA explicit solver. Different empty columns are used as the targets, and these columns are made from Weldox 460E steel and have different wall thicknesses (6, 7, 8 and 9 mm) and internal column edge lengths (60, 70, 80 and 90 mm). To validate the derived relation for the ballistic limit velocity, the results of the numerical simulations are compared with the corresponding theoretical predictions. Finally, the effects of some geometrical characteristics such as projectile diameter and mass on the perforation process and the ballistic limit velocity are discussed.
Subject
Engineering (miscellaneous),Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Damage Effect of Titanium Alloy by Reactive Fragment Oblique Penetration;Journal of Physics: Conference Series;2023-04-01
2. Space environment effects on equipment and structures—current and future technologies;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2021-08-31
3. Development of an efficient numerical model for shaped charge analysis;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2016-04-26