A review of the use and utility of industrial network-based open source simulators: functionality, security, and policy viewpoints

Author:

Ani Uchenna Daniel1ORCID,Watson Jeremy McKendrick1,Carr Madeline1,Cook Al2,Nurse Jason RC3

Affiliation:

1. Department of Science Technology Engineering and Public Policy, University College London, UK

2. Critical Insights Security Ltd, UK

3. School of Computing, University of Kent, UK

Abstract

Simulation can provide a useful means to understand issues linked to industrial network operations. For transparent, collaborative, cost-effective solutions development, and to attract the broadest interest base, simulation is critical and open source suggested, because it costs less to access, install, and use. This study contributes new insights from security and functionality characteristics metrics to underscore the use and effectiveness of open source simulators. Several open source simulators span applications in communications and wireless sensor networks, industrial control systems, and the Industrial Internet of Things. Some drivers for their use span are as follows: supported license types; programming languages; operating systems platforms; user interface types; documentation and communication types; citations; code commits; and number of contributors. Research in these simulators is built around performance and optimization relative to flexibility, scalability, mobility, and active user support. No single simulator addresses all these conceivable characteristics. In addition to modeling contexts that match real-world scenarios and issues, an effective open source simulator needs to demonstrate credibility, which can be gained partly through actively engaging experts from interdisciplinary teams along with user contributions integrated under tight editorial controls. Government-led policies and regulations are also necessary to support their wider awareness and more productive use for real-world purposes.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3