Mean wind model for direct fire ballistics

Author:

Bober Tomas1ORCID,Recchia Thomas1

Affiliation:

1. Armament Gradate School, Picatinny Arsenal, USA

Abstract

The depiction of wind used in modern system accuracy studies directly influences the design of precision-oriented weapon platforms. Therefore, the primary objective of the effort presented within was to develop a literature-supported definition of the battlefield wind environment relevant to direct fire combat engagements. This goal was accomplished by incorporating modern micrometeorological theory into the ballistic domain in order to define the mean wind along the flight path of a projectile. This information was then further leveraged to develop a description of the generic battlefield mean wind environment. The final portion of the effort compared the new and legacy wind models within a sample engagement scenario in order to quantify the differences between the two portrayals of atmospheric motion within the quasi-combat domain. The results of the work conducted indicate that the traditional view of wind tends to overestimate its contribution to the outcome of an engagement. While this single study does not completely invalidate the legacy approach to wind modeling in direct fire ballistics, it does warrant further investigation into the topic, as a more rigorous representation of atmospheric motion would ultimately lead to the production of more accurate weapon systems.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Reference45 articles.

1. Kidd CJ. Army direct fire accuracy: precision and its effects on the battlefield. Army Command and General Staff College, Ft. Leavenworth, KS, 2005.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atmospheric turbulence model for direct fire ballistics;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2020-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3