Seeing the Black Lives Matter Movement Through Computer Vision? An Automated Visual Analysis of News Media Images on Facebook

Author:

Kim Minchul1ORCID,Bas Ozen2ORCID

Affiliation:

1. Chung-Ang University, South Korea

2. Kadir Has University, Turkey

Abstract

In this study, automated visual analysis was used to explore how the political leanings of news media are associated with their visual representation of the Black Lives Matter (BLM) movement. We analyzed more than 9,000 images posted on Facebook pages run by U.S. news media between August 2014 and October 2020 using commercially developed computer vision tools and a topic modeling algorithm. The results show that images used in BLM-related news coverage can be categorized into 10 distinctively themed groups that overlap with the main types of protest images uncovered by manual content analysis. Furthermore, news sources engaged in different visual representation practices depending on their partisan leanings. The patterns uncovered in this study imply that (de)legitimization of protests may take either active or passive forms. These findings contribute to theorization of the way news media might use social media platforms to (de)legitimize social protests, which may influence public opinion on social issues.

Publisher

SAGE Publications

Subject

Computer Science Applications,Communication,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3