Moderation, Networks, and Anti-Social Behavior Online

Author:

Haythornthwaite Caroline1ORCID

Affiliation:

1. Syracuse University, USA

Abstract

Major open platforms, such as Facebook, Twitter, Instagram, and Tik Tok, are bombarded with postings that violate platform community standards, offend societal norms, and cause harm to individuals and groups. To manage such sites requires identification of content and behavior that is anti-social and action to remove content and sanction posters. This process is not as straightforward as it seems: what is offensive and to whom varies by individual, group, and community; what action to take depends on stated standards, community expectations, and the extent of the offense; conversations can create and sustain anti-social behavior (ASB); networks of individuals can launch coordinated attacks; and fake accounts can side-step sanctioning behavior. In meeting the challenges of moderating extreme content, two guiding questions stand out: how do we define and identify ASB online? And, given the quantity and nuances of offensive content: how do we make the best use of automation and humans in the management of offending content and ASB? To address these questions, existing studies on ASB online were reviewed, and a detailed examination was made of social media moderation practices on major media. Pros and cons of automated and human review are discussed in a framework of three layers: environment, community, and crowd. Throughout, the article adds attention to the network impact of ASB, emphasizing the way ASB builds a relation between perpetrator(s) and victim(s), and can make ASB more or less offensive.

Publisher

SAGE Publications

Subject

Computer Science Applications,Communication,Cultural Studies

Reference70 articles.

1. The General Aggression Model

2. BBC. (2020, May 13). Facebook to pay $52m to content moderators over PTSD. https://www.bbc.com/news/technology-52642633

3. Buck S. (2017, October 30). The “rape in cyber space” from 25 years ago posed problems we still haven’t solved today. Timeline. https://timeline.com/rape-in-cyberspace-lambdamoo-da9cf0c74e9e

4. Algorithmic Censorship by Social Platforms: Power and Resistance

5. Criddle C. (2021, May 12). Facebook moderator: “Every day was a nightmare.” BBC News. https://www.bbc.com/news/technology-57088382

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3