Affiliation:
1. McGill University, Canada
2. Concordia University, Canada
Abstract
This article proposes a contextualist approach to machine learning and aesthetics, using LANDR, an online platform that offers automated music mastering and that trumpets its use of supervised machine learning, branded as artificial intelligence (AI). Increasingly, machine learning will become an integral part of the processing of sounds and images, shaping the way our culture sounds, looks, and feels. Yet we cannot know exactly how much of a role or what role machine learning plays in LANDR. To parochialize the machine learning part of what LANDR does, this study spirals in from bigger contexts to smaller ones: LANDR’s place between the new media industry and the mastering industry; the music scene in their home city, Montreal, Quebec; LANDR use by DIY musicians and independent engineers; and, finally, the LANDR interface and the sound it produces in use. While LANDR claims to automate the work of mastering engineers, it appears to expand and morph the definition of mastering itself: it devalues people’s aesthetic labor as it establishes higher standards for recordings online. And unlike many other new media firms, LANDR’s connection to its local music scene has been essential to its development, growth, and authority, even as they have since moved on from that scene, and even as the relationship was never fully reciprocal.
Funder
Social Sciences and Humanities Research Council of Canada
Subject
Computer Science Applications,Communication,Cultural Studies
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献