Machine Learning in Context, or Learning from LANDR: Artificial Intelligence and the Platformization of Music Mastering

Author:

Sterne Jonathan1,Razlogova Elena2

Affiliation:

1. McGill University, Canada

2. Concordia University, Canada

Abstract

This article proposes a contextualist approach to machine learning and aesthetics, using LANDR, an online platform that offers automated music mastering and that trumpets its use of supervised machine learning, branded as artificial intelligence (AI). Increasingly, machine learning will become an integral part of the processing of sounds and images, shaping the way our culture sounds, looks, and feels. Yet we cannot know exactly how much of a role or what role machine learning plays in LANDR. To parochialize the machine learning part of what LANDR does, this study spirals in from bigger contexts to smaller ones: LANDR’s place between the new media industry and the mastering industry; the music scene in their home city, Montreal, Quebec; LANDR use by DIY musicians and independent engineers; and, finally, the LANDR interface and the sound it produces in use. While LANDR claims to automate the work of mastering engineers, it appears to expand and morph the definition of mastering itself: it devalues people’s aesthetic labor as it establishes higher standards for recordings online. And unlike many other new media firms, LANDR’s connection to its local music scene has been essential to its development, growth, and authority, even as they have since moved on from that scene, and even as the relationship was never fully reciprocal.

Funder

Social Sciences and Humanities Research Council of Canada

Publisher

SAGE Publications

Subject

Computer Science Applications,Communication,Cultural Studies

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3