Optimization of receiving window width of the correlation receiver for radiofrequency identification marker localization

Author:

Vestenický Peter1ORCID,Vestenický Martin2

Affiliation:

1. Faculty of Electrical Engineering and Information Technology, Department of Control and Information Systems, University of Žilina, Žilina, Slovakia

2. Faculty of Electrical Engineering and Information Technology, Department of Multimedia and Information-Communication Technologies, University of Žilina, Žilina, Slovakia

Abstract

The radiofrequency identification (RFID) technology is widely used in modern industry to identify and localize the final manufactured products and their parts. This article analyses and optimizes the localization process of special RFID transponders – markers used to mark the position and type of the underground facility networks (pipes, cables, etc.). The analysis of electric circuits representing the system consisting of the marker and the localization device is performed by numerical solution of the corresponding equations. The results of the numerical solution are then used for calculation of the analytical description of the waveform received as response from the excited marker. The constants obtained from the analytical form of the solution are then used as input parameters for optimization of time window width in the correlation receiver of the marker responses. The optimization is focused on the maximization of the signal-to-noise ratio in the receiving time window. The theoretical calculations are completed by the processing of real signals recorded by an oscilloscope from the localization device where the correlation receiver is planned to apply.

Funder

Cultural and Educational Grant Agency of the Slovak Republic

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlator of the Preamble of an Automated Dependent Surveillance Signal;Lecture Notes in Mechanical Engineering;2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3