Radio environment map construction by adaptive ordinary Kriging algorithm based on affinity propagation clustering

Author:

Xia Haiyang1ORCID,Zha Song1,Huang Jijun1,Liu Jibin1

Affiliation:

1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China

Abstract

In the era of 5G mobile communication, radio environment maps are increasingly viewed as a powerful weapon for the optimization of spectrum resources, especially in the field of autonomous vehicles. However, due to the constraint of limited resources when it comes to sensor networks, it is crucial to select a suitable scale of sensor measurements for radio environment map construction. This article proposes an adaptive ordinary Kriging algorithm based on affinity propagation clustering as a novel spatial interpolation method for the construction of the radio environment map, which can provide precise awareness of signal strength at locations where no measurements are available. Initially, a semivariogram is obtained from all the sensor measurements. Then, in order to select the minimum scale of measurements and at the same time guarantee accuracy, the affinity propagation clustering is introduced in the selection of sensors. Moreover, the sensor estimation groups are created based on the clustering result, and estimation results are obtained by ordinary Kriging. In the end, the simulation of the proposed algorithm is analyzed through comparisons with three conventional algorithms: inverse distance weighting, nearest neighbor, and ordinary Kriging. As a result, the conclusion can be drawn that the proposed algorithm is superior to others in accuracy as well as in efficiency.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3