On energy-balanced backpressure routing mechanisms for stochastic energy harvesting wireless sensor networks

Author:

Liu Zheng1,Yang Xinyu1,Zhao Peng1,Yu Wei2

Affiliation:

1. Department of Computer Science and Technology, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, P.R. China

2. Department of Computer and Information Sciences, Towson University, Towson, MD, USA

Abstract

In energy harvesting wireless sensor networks, energy imbalance among sensor nodes is detrimental to network performance and battery life. Particularly, nodes that are closer to a data sink or have less energy replenishment tend to exhaust the energy earlier, leading to some sub-regions of the environment being left unmonitored. Existing research efforts focus on the energy management based on the assumption that the energy harvesting process is predictable. Unfortunately, such an assumption is not practicable in real-world energy harvesting systems. With the consideration of the unpredictability of the harvestable energy, in this article, we adopt the stochastic Lyapunov optimization framework to jointly manage energy and make routing decision, which could help mitigate the energy imbalance problem. We develop two online policies: (1) Energy-balanced Backpressure Routing Algorithm for lossless networks and (2) Enhanced Energy-balanced Backpressure Routing Algorithm for time varying wireless networks with lossy links. Both Energy-balanced Backpressure Routing Algorithm and Enhanced Energy-balanced Backpressure Routing Algorithm are distributed, queuing stable, and do not require the explicit knowledge of the statistics of the energy harvesting. The simulation data show that our developed algorithms can achieve significantly higher performance in terms of energy balance than existing schemes such as Original Backpressure Algorithm and the Backpressure Collection Protocol.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application-oriented performance comparison of 802.11p andLTE-V in a V2V communication system;Tsinghua Science and Technology;2019-04

2. A Cross-Layer Optimization QoS Scheme in Wireless Multimedia Sensor Networks;Algorithms;2019-03-30

3. Physarum-inspired routing protocol for energy harvesting wireless sensor networks;Telecommunication Systems;2017-08-21

4. Erratum;International Journal of Distributed Sensor Networks;2017-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3