MPDP k-medoids: Multiple partition differential privacy preserving k-medoids clustering for data publishing in the Internet of Medical Things

Author:

Zhang Zekun1ORCID,Wu Tongtong1ORCID,Sun Xiaoting1ORCID,Yu Jiguo23ORCID

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, P.R. China

2. School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P.R. China

3. Shandong Laboratory of Computer Networks, Jinan, P.R. China

Abstract

The tremendous growth of Internet of Medical Things has led to a surge in medical user data, and medical data publishing can provide users with numerous services. However, neglectfully publishing the data may lead to severe leakage of user’s privacy. In this article, we investigate the problem of data publishing in Internet of Medical Things with privacy preservation. We present a novel system model for Internet of Medical Things user data publishing which adopts the proposed multiple partition differential privacy k-medoids clustering algorithm for data clustering analysis to ensure the security of user data. Particularly, we propose a multiple partition differential privacy k-medoids clustering algorithm based on differential privacy in data publishing. Based on the traditional k-medoids clustering, multiple partition differential privacy k-medoids clustering algorithm optimizes the randomness of selecting initial center points and adds Laplace noise to the clustering process to improve data availability while protecting user’s privacy information. Comprehensive analysis and simulations demonstrate that our method can not only meet the requirements of differential privacy but also retain the better availability of data clustering.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3