Random forest–based feature selection and detection method for drunk driving recognition

Author:

Li ZhenLong1,Wang HaoXin1ORCID,Zhang YaoWei1,Zhao XiaoHua1

Affiliation:

1. College of Metropolitan Transportation, Beijing University of Technology, Beijing, China

Abstract

A method for drunk driving detection using Feature Selection based on the Random Forest was proposed. First, driving behavior data were collected using a driving simulator at Beijing University of Technology. Second, the features were selected according to the Feature Importance in the random forest. Third, a dummy variable was introduced to encode the geometric characteristics of different roads so that drunk driving under different road conditions can be detected with the same classifier based on the random forest. Finally, the linear discriminant analysis, support vector machine, and AdaBoost classifiers were used and compared with the random forest. The accuracy, F1 score, receiver operating characteristic curve, and area under the curve value were used to evaluate the performance of the classifiers. The results show that Accelerator Depth, Speed, Distance to the Center of the Lane, Acceleration, Engine Revolution, Brake Depth, and Steering Angle have important influences on identifying the drivers’ states and can be used to detect drunk driving. Specifically, the classifiers with Accelerator Depth outperformed the other classifiers without Accelerator Depth. This means that Accelerator Depth is an important feature. Both the AdaBoost and random forest classifiers have an accuracy of 81.48%, which verified the effectiveness of the proposed method.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3