An effective and efficient hierarchical K-means clustering algorithm

Author:

Qi Jianpeng1,Yu Yanwei1,Wang Lihong1,Liu Jinglei1,Wang Yingjie1

Affiliation:

1. School of Computer and Control Engineering, Yantai University, Yantai, China

Abstract

K-means plays an important role in different fields of data mining. However, k-means often becomes sensitive due to its random seeds selecting. Motivated by this, this article proposes an optimized k-means clustering method, named k*-means, along with three optimization principles. First, we propose a hierarchical optimization principle initialized by k* seeds ([Formula: see text]) to reduce the risk of random seeds selecting, and then use the proposed “top- n nearest clusters merging” to merge the nearest clusters in each round until the number of clusters reaches at [Formula: see text]. Second, we propose an “optimized update principle” that leverages moved points updating incrementally instead of recalculating mean and [Formula: see text] of cluster in k-means iteration to minimize computation cost. Third, we propose a strategy named “cluster pruning strategy” to improve efficiency of k-means. This strategy omits the farther clusters to shrink the adjustable space in each iteration. Experiments performed on real UCI and synthetic datasets verify the efficiency and effectiveness of our proposed algorithm.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3