A novel semi-empirical supervised model of vortex-induced vertical force on a flat closed-box bridge deck

Author:

Tian Xiaoxia12ORCID,Yan Jingwen2

Affiliation:

1. Computer and Information Engineering College, Hanshan Normal University, Chaozhou, China

2. College of Engineering, Shantou University, Shantou, China

Abstract

This study presents a novel single-degree-of-freedom model of vortex-induced vertical force, which is based on supervised learning. There are three steps in the process of modeling. First, a hypothesis function based on the Taylor expansion is applied to describe the complicated of vortex-induced vertical force. Second, this hypothesis function is optimized by spectrum and correlation analysis. The terms in this function are deleted when they meet one of the following cases: the frequency amplitudes are close to 0; the correlation coefficients with the vortex-induced vertical force are less than 0.3; the correlation coefficients with other low-order terms are more than 0.8. Third, the validity and reliability of the optimized function are verified by comparative and residual analysis. The process of optimization makes the proposed model simple and well describes the main characteristics of vortex-induced vertical forces. Moreover, the maximum displacement is accurately predicted according to the proposed model. Simulation results show that the proposed model has a high coefficient of determination ( R2) compared with Scanlan’s and Zhu’s models, which means that the proposed model is more suitable to describe vortex-induced vertical forces.

Funder

State Natural Science Fund project

the 2015 Open Fund of Structure and Wind Tunnel Key Laboratory of Guangdong Province

department of education of guangdong province

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3