Mobile target localization based on iterative tracing for underwater wireless sensor networks

Author:

Guo Ruolin1,Qin Danyang1ORCID,Zhao Min1,Xu Guangchao1

Affiliation:

1. Heilongjiang University, Harbin, China

Abstract

In underwater wireless sensor networks, sensor position information has important value in network protocols and collaborative detection. However, many challenges were introduced in positioning sensor nodes due to the complexity of the underwater environment. Aiming at the problem of the stratification effect of underwater acoustic waves, the long propagation delay of messages, as well as the mobility of sensor nodes, a mobile target localization scheme for underwater wireless sensor network is proposed based on iterative tracing. Four modules are established in the mobile target localization based on iterative tracing: the data collection and rough position estimation, the estimation and compensation of propagation delay, the node localization, and the iteration. The deviation of distance estimation due to the assumption that acoustic waves propagate along straight lines in an underwater environment is compensated by the mobile target localization based on iterative tracing, and weighted least squares estimation method is used to perform linear regression. Moreover, an interacting multiple model algorithm is put forward to reduce the positioning error caused by the mobility of sensor nodes, and the two services of node time synchronization and localization assist each other during the iteration to improve the accuracy of both parties. The simulation results show that the proposed scheme can achieve higher localization accuracy than the similar schemes, and the positioning errors caused by the above three problems can be reduced effectively.

Funder

Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province

Postdoral Research of Heilongjiang Province

national natural science foundation of china

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3