Intelligent health monitoring system based on smart clothing

Author:

Lin Chung-Chih12,Yang Chih-Yu1,Zhou Zhuhuang34,Wu Shuicai3

Affiliation:

1. Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan

2. Division of Neurology, Linkou Medical Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan

3. College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China

4. Faculty of Information Technology, Beijing University of Technology, Beijing, China

Abstract

In this study, we proposed an intelligent health monitoring system based on smart clothing. The system consisted of smart clothing and sensing component, care institution control platform, and mobile device. The smart clothing is a wearable device for electrocardiography signal collection and heart rate monitoring. The system integrated our proposed fast empirical mode decomposition algorithm for electrocardiography denoising and hidden Markov model–based algorithm for fall detection. Eight kinds of services were provided by the system, including surveillance of signs of life, tracking of physiological functions, monitoring of the activity field, anti-lost, fall detection, emergency call for help, device wearing detection, and device low battery warning. The performance of fast empirical mode decomposition and hidden Markov model were evaluated by experiment I (fast empirical mode decomposition evaluation) and experiment II (fall detection), respectively. The accuracy and sensitivity of R-peak detection using fast empirical mode decomposition were 96.46% and 98.75%, respectively. The accuracy, sensitivity, and specificity of fall detection using hidden Markov model were 97.92%, 90.00%, and 99.50%, respectively. The system was evaluated in an elderly long-term care institution in Taiwan. The results of the satisfaction survey showed that both the caregivers and the elders are willing to use the proposed intelligent health monitoring system. The proposed system may be used for long-term health monitoring.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3