Complexity reduction method for High Efficiency Video Coding encoding based on scene-change detection and image texture information

Author:

Lee Hong-rae1,Ahn Eun-bin1,Kim A-young1,Seo Kwang-deok1ORCID

Affiliation:

1. Division of Computer and Telecommunications Engineering, Yonsei University, Wonju, Korea

Abstract

Recently, as demand for high-quality video and realistic media has increased, High Efficiency Video Coding has been standardized. However, High Efficiency Video Coding requires heavy cost in terms of computational complexity to achieve high coding efficiency, which causes problems in fast coding processing and real-time processing. In particular, High Efficiency Video Coding inter-coding has heavy computational complexity, and the High Efficiency Video Coding inter prediction uses reference pictures to improve coding efficiency. The reference pictures are typically signaled in two independent lists according to the display order, to be used for forward and backward prediction. If an event occurs in the input video, such as a scene change, the inter prediction performs unnecessary computations. Therefore, the reference picture list should be reconfigured to improve the inter prediction performance and reduce computational complexity. To address this problem, this article proposes a method to reduce computational complexity for fast High Efficiency Video Coding encoding using information such as scene changes obtained from the input video through preprocessing. Furthermore, reference picture lists are reconstructed by sorting the reference pictures by similarity to the current coded picture using Angular Second Moment, Contrast, Entropy, and Correlation, which are image texture parameters from the input video. Simulations are used to show that both the encoding time and coding efficiency could be improved simultaneously by applying the proposed algorithms.

Funder

National Research Foundation of Kore

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3