A randomized block policy gradient algorithm with differential privacy in Content Centric Networks

Author:

Wang Lin1ORCID,Xu Xingang1ORCID,Zhao Xuhui1ORCID,Li Baozhu2ORCID,Zheng Ruijuan1ORCID,Wu Qingtao1ORCID

Affiliation:

1. School of Information Engineering, Henan University of Science and Technology, Luoyang, China

2. Internet of Things & Smart City Innovation Platform, Zhuhai Fudan Innovation Institute, Zhuhai, China

Abstract

Policy gradient methods are effective means to solve the problems of mobile multimedia data transmission in Content Centric Networks. Current policy gradient algorithms impose high computational cost in processing high-dimensional data. Meanwhile, the issue of privacy disclosure has not been taken into account. However, privacy protection is important in data training. Therefore, we propose a randomized block policy gradient algorithm with differential privacy. In order to reduce computational complexity when processing high-dimensional data, we randomly select a block coordinate to update the gradients at each round. To solve the privacy protection problem, we add a differential privacy protection mechanism to the algorithm, and we prove that it preserves the [Formula: see text]-privacy level. We conduct extensive simulations in four environments, which are CartPole, Walker, HalfCheetah, and Hopper. Compared with the methods such as important-sampling momentum-based policy gradient, Hessian-Aided momentum-based policy gradient, REINFORCE, the experimental results of our algorithm show a faster convergence rate than others in the same environment.

Funder

the basic research projects in the University of Henan Province

the Key Scientific and Technological Projects Henan Province

National Natural Science Foundation of China

Scientific and Technological Innovation Team of Colleges and Universities in Henan Province

key scientific research project of colleges and universities in henan province

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Artificial Intelligence Technology in Distributed Privacy-Preserving Clustering Mining Algorithm;Proceedings of the 4th International Conference on Big Data Analytics for Cyber-Physical System in Smart City - Volume 1;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3