A quality-of-service-aware dynamic evolution model for space–ground integrated network

Author:

Yi Zhuo1,Du Xuehui1,Liao Ying12,Cao Lifeng1

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China

2. Information Warfare and Command Training Department, PLA National Defense University, Beijing, China

Abstract

Space–ground integrated network, a strategic, driving, and irreplaceable infrastructure, guarantees the development of economic and national security. However, its natures of limited resources, frequent handovers, and intermittently connected links significantly reduce the quality of service. To address this issue, a quality-of-service-aware dynamic evolution model is proposed based on complex network theory. On one hand, a quality-of-service-aware strategy is adopted in the model. During evolution phases of growth and handovers, links are established or deleted according to the quality-of-service-aware preferential attachment following the rule of better quality of service getting richer and worse quality of service getting poor or to die. On the other hand, dynamic handover of nodes and intermittent connection of links are taken into account and introduced into the model. Meanwhile, node heterogeneity is analyzed and heterogeneous nodes are endowed with discriminate interactions. Theoretical analysis and simulations are utilized to explore the degree distribution and its characteristics. Results reveal that this model is a scale-free model with drift power-law distribution, fat-tail and small-world effect, and drift character of degree distribution results from dynamic handover. Furthermore, this model exerts well fault tolerance and attack resistance compared to signal-strength-based strategy. In addition, node heterogeneity and quality-of-service-aware strategy improve the attack resistance and overall quality of service of space–ground integrated network.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of anti-mapping security access technology in network security protection;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. An Efficient Topology Emulation Technology for the Space-Air-Ground Integrated Network;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2023-05-20

3. Cloud-Based Experimental Platform for the Space-Ground Integrated Network;Wireless Communications and Mobile Computing;2020-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3