Interconnection algorithm of a wide range of pervasive devices for the Internet of things

Author:

Chi Tao12ORCID,Chen Ming12

Affiliation:

1. College of Information Technology, Shanghai Ocean University, Shanghai, China

2. Key Laboratory of Fisheries Information, Ministry of Agriculture, Shanghai, China

Abstract

With the rapid development of wireless communications for network of things, more and more models for such networks-on-chip architectures have been created and used in a wide range of applications. In this article, the behaviors of wireless communications for such networks-on-chip architectures are analyzed at two layers. The physical layer behaviors consist of what frequency is used, how and when signals are transmitted, and how transceivers’ responses are decoded. The medium access control layer behavior consists of how to provide a reliable link between two peer medium access control entities. For the optimization objective of each layer, the specific problems surrounding the design of combined radio frequency identification/Bluetooth/Wi-Fi chips are considered at their respective layer, and then, corresponding optimization methods are carried out. The problem of optimization is defined as a linear programming problem in which each active transceiver is assigned to a channel on condition that all the constraint is met on every link. Each optimization procedure proposed in this article is performed through the adaptation of its objective, from each one of these layers, in order to minimize interference previously specified. In principle, the optimization can be made layer by layer separately. The optimization criteria consist of a specification of the behaviors of wireless communications (radio frequency identification, Bluetooth, Wi-Fi) and a set of constraints and goals. Our approach is to perform it independently within the given task, where the given task can be achieved with its sequencing graph entities, including automate selection, binding, and scheduling. We have implemented our algorithms on a field-programmable gate array and applied them to some off-the-shelf products. This methodology looks promising, not only for the results presented and obtained through computer simulations but also for its generality concerning to the kind of wireless network system used. Therefore, such methodology is expandable either to multi-core networks-on-chip architecture or also to the off-the-shelf products.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Choice of Wireless Identification Technology for Multi-operation Manufacture;Lecture Notes in Electrical Engineering;2021

2. Trust information network in social Internet of things using trust-aware recommender systems;International Journal of Distributed Sensor Networks;2020-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3