A simulation work for generating a novel dataset to detect distributed denial of service attacks on Vehicular Ad hoc NETwork systems

Author:

Alhaidari Fahd A1ORCID,Alrehan Alia Mohammed1

Affiliation:

1. College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Abstract

Vehicular Ad hoc NETwork is a promising technology providing important facilities for modern transportation systems. It has garnered much interest from researchers studying the mitigation of attacks including distributed denial of service attacks. Machine learning techniques, which mainly rely on the quality of the datasets used, play a role in detecting many attacks with a high level of accuracy. We conducted a comprehensive literature review and found many limitations on the datasets available for distributed denial of service attacks on Vehicular Ad hoc NETwork including the following: unavailability of online versions, an absence of distributed denial of service traffic, unrepresentative of Vehicular Ad hoc NETwork, and no information regarding the network configurations. Therefore, in this article, we proposed a novel simulation technique to generate a valid dataset called Vehicular Ad hoc NETwork distributed denial of service dataset, which is dedicated to Vehicular Ad hoc NETworks. Vehicular Ad hoc NETwork distributed denial of service dataset holds information on distributed denial of service attack traffic considering Vehicular Ad hoc NETwork architecture, traffic density, attack intensity, and nodes mobility. Well-known simulation tools such as SUMO, OMNeT++, Veins, and INET were used to ensure that all the properties of Vehicular Ad hoc NETwork have been captured. We then compared Vehicular Ad hoc NETwork distributed denial of service dataset with several studies to prove its novelty and evaluated the dataset using several machine learning models. We confirmed that studied models using this dataset achieved high accuracy above 99.5% except support-vector machine that achieved 97.3%.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3