Randomized geographic-based routing with nearly guaranteed delivery for three-dimensional ad hoc network

Author:

Abdallah Alaa E.1,Abdallah Emad E.1,Bsoul Mohammad1,Otoom Ahmed Fawzi1

Affiliation:

1. Faculty of Information Technology, The Hashemite University, Zarqa, Jordan

Abstract

Several routing algorithms have been proposed for efficient routing in mobile ad hoc networks, most of them consider mobile nodes embedded in two-dimensional environments. However, in reality, these networks are embedded in three-dimensional environments. Usually, two-dimensional routing algorithms have several assumptions that are not valid for three-dimensional spaces. In this article, we propose four different randomized geographic-based routing algorithms that have the following properties: (1) nearly guaranteed delivery rate, by using randomize route to overcome local minimum problems; (2) low overhead, by extracting a virtual backbone of the network and then conducting the routing algorithms over the extracted backbone to decrease the search space; (3) low path dilation, by hybridizing the new algorithms with progress-based routing which have very low path dilation; and (4) works in three-dimensional environment. The first algorithm 3DRanDom chooses the next neighbor randomly from a dominating set of the network (extracted locally). The second algorithm 3DRanDomProb extracts a dominating set and sends to one of the resulted neighbors randomly with more probability for the nodes closer to the destination. The third algorithm G_3DRanDomProb tries to progress as much as possible to the destination, if the progress is not possible, the algorithm switches to 3DRanDomProb. The fourth algorithm G_3DRanDomProb_G uses progress-based routing as much as possible, then it switches to 3DRanDomProb until it overcomes the local minimum problem and then goes back to progress-based routing. We show experimentally that these hybrid randomized routing algorithms on three-dimensional mobile ad hoc networks can achieve nearly guaranteed delivery while discovering routes significantly closer in length to the shortest path and with low overhead.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3