A novel method for asynchronous source localisation based on time of arrival measurements

Author:

Zhu Huijie1ORCID,Liu Sheng2ORCID,Yao Zhiqiang2,Okonkwo Moses Chukwuka2,Peng Zheng2

Affiliation:

1. Science and Technology on Communication Information Security Control Laboratory and No. 36 Research Institute of China Electronics Technology Group Corporation, Jiaxing, China

2. Hunan National Applied Mathematics Center, Xiangtan University, Xiangtan, China

Abstract

Source localisation is an important component in the application of wireless sensor networks, and plays a key role in environmental monitoring, healthcare and battlefield surveillance and so on. In this article, the source localisation problem based on time-of-arrival measurements in asynchronous sensor networks is studied. Because of imperfect time synchronisation between the anchor nodes and the signal source node, the unknown parameter of start transmission time of signal source makes the localisation problem further sophisticated. The derived maximum-likelihood estimator cost function with multiple local minimum is non-linear and non-convex. A novel two-step method which can solve the global minimum is proposed. First, by leveraging dimensionality reduction, the maximum (minimum) distance maximum (minimum) time-of-arrival matching-based second-order Monte Carlo method is applied to find a rough initial position of the signal source with low computational complexity. Then, the rough initial position value is refined using trust region method to obtain the final positioning result. Comparative analysis with state-of-the-art semidefinite programming and min–max criterion-based algorithms are conducted. Simulations show that the proposed method is superior in terms of localisation accuracy and computational complexity, and can reach the optimality benchmark of Cramér–Rao Lower Bound even in high signal-to-noise ratio environments.

Funder

National Key R&D Programme of China

NSFC

Postgraduate Scientific Research Innovation

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3