Physarum-inspired multi-parameter adaptive routing protocol for coal mine hybrid wireless mesh networks

Author:

Han Guangzhi1,Jiang Haifeng1,Lu Liansheng1,Ma Shanshan1,Xiao Shuo1

Affiliation:

1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China

Abstract

Hybrid wireless mesh networks are suitable for complex environment communication in coal mine. Mesh clients with application service and routing function in hybrid wireless mesh networks can form a highly robust hybrid network with mesh routers. The processes of nutrient flux transfer and path choice in Physarum network are similar to data transmission and routing selection in hybrid wireless mesh networks. In this article, we use Physarum-inspired autonomic optimization model to design a Physarum-inspired multi-parameter adaptive routing protocol to improve the service quality of coal mine hybrid wireless mesh networks. Physarum-inspired multi-parameter adaptive routing protocol has achieved distributed routing decision by drawing the hybrid wireless mesh network parameters into Poisson’s equation of Physarum-inspired autonomic optimization model to measure the quality of link and implements two adjustment strategies to make the protocol more adaptive. The resource-dependent adjustment, which considers the irreversible energy consumption and recoverable buffer occupation, makes the energy consumption problem prominent when there is a lack of energy. The position-dependent adjustment makes routing decision efficient according to the load of different positions, which is caused by many-to-one data transmission model in coal mine. Based on NS2, simulation experiments are performed to evaluate the performance of Physarum-inspired multi-parameter adaptive routing protocol, and the results are compared with those of ad hoc on-demand distance vector, HOPNET, ANT-DSR, and Physarum-inspired routing protocols. The experimental results show that the route path selected by Physarum-inspired multi-parameter adaptive routing protocol is better than those selected by the other four protocols in the performance of average end-to-end delay and delivery ratio. The balance of energy consumption and network load is achieved and the network lifetime is effectively prolonged when using Physarum-inspired multi-parameter adaptive routing protocol.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physarum-Inspired Autonomous Optimized Routing Protocol for Coal Mine MANET;Wireless Communications and Mobile Computing;2020-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3