A new scheme for evaluating energy efficiency of data compression in wireless sensor networks

Author:

Liu Shaoqiang1,Liu Yanfang1,Chen Xiang1,Fan Xiaoping2

Affiliation:

1. School of Information Science and Engineering, Central South University, Changsha, China

2. Hunan University of Finance and Economics, Changsha, China

Abstract

Data communication incurs the highest energy cost in wireless sensor networks, and restricts the application of wireless sensor networks. Data compression is a promising technique that can reduce the amount of data exchanged between nodes and results in energy saving. However, there is a lack of effective methods to evaluate the efficiency of data compression algorithms and to increase nodes’ energy efficiency. The energy saving of nodes is related to both hardware and software, this article proposes a new scheme for evaluating energy efficiency of data compression in wireless sensor networks according to the node’s hardware and software. The relationship between the energy efficiency and the hardware and software factors is expressed by a formula. In this formula, energy efficiency can be improved by increasing the compression ratio and decreasing the ratio of s/ k, in which k represents the node’s hardware factor related to energy consumption of processor, wireless module, and so on and s represents the software factor that reflects the energy consumption of the algorithm. Based on the scheme, a mechanism is proposed to improve the node’s energy efficiency by selecting effective algorithms in accordance with the node’s radio frequency power. The feasibility of the scheme is demonstrated with lossless data compression algorithms on the MSP430F2618 processor.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3