An end-to-end covert channel via packet dropout for mobile networks

Author:

Tan Yu-an1,Xu Xinting1,Liang Chen1,Zhang Xiaosong12,Zhang Quanxin1,Li Yuanzhang1

Affiliation:

1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

2. Department of Computer Science and Technology, Tangshan University, Tangshan, China

Abstract

Voice over Long-Term Evolution enables reliable transmission among enormous Internet of Things devices, by providing end-to-end quality of service for Internet protocol–based services such as audio, video, and multimedia messaging. The research of covert timing channels aims at transmitting covert message stealthily to the receiver using variations of timing behavior. Existing approaches mainly modulate the covert message into inter-packet delays of overt traffic, which are not suitable for Voice over Long-Term Evolution, since most of the inter-packet delays of Voice over Long-Term Evolution traffic are of regular distribution, and any modification on inter-packet delays is easy to be detected. To address the issue, in this work, we propose a novel covert timing channel for the video stream in Voice over Long-Term Evolution, which modulates the covert message by deliberately dropping out video packets. Based on the two-dimensional mapping matrix, the blocks of covert message are mapped into dropout-packet sequence numbers. To recover the covert message, the receiver retrieves the sequence numbers of lost packets and identifies them to be translated into blocks of the covert message. To evaluate our scheme, the simulations with different packet loss rates are conducted to validate the undetectability, throughput, and robustness, finally, the results show that this scheme is effective and reliable.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Robust Covert Channel With Self-Bit Recovery for IEEE 802.11 Networks;IEEE Internet of Things Journal;2024-08-15

2. Press play, install malware: a study of rhythm game-based malware dropping;International Journal of Information Security;2024-07-29

3. A Stealthy Communication Model with Blockchain Smart Contract for Bidding Systems;Electronics;2024-06-27

4. Whispering Packets: Hiding Messages in VoIP Traffic;2024 5th International Conference on Computer Engineering and Application (ICCEA);2024-04-12

5. A Verifiable Dynamic Multi-secret Sharing Obfuscation Scheme Applied to Data LakeHouse;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3